Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Aiming to improve the photocatalytic properties of transition metal perovskites to be used as robust photoanodes, [LaFeO3]1−x/[SrTiO3]x nanocomposites (LFO1−x/STOx) are considered. This hybrid structure combines good semiconducting properties and an interesting intrinsic remanent polarization. All the studied samples were fabricated using a solid-state method followed by high-energy ball milling, and they were subsequently deposited by spray coating. The synthesized compounds were demonstrated to possess orthorhombic (Pnma) and cubic (Pm3¯m) structures for LFO and STO, respectively, with an average grain size of 55–70 nm. The LFO1−x/STOx nanocomposites appeared to exhibit high visible light absorption, corresponding to band gaps of 2.17–3.21 eV. Our findings show that LFO0.5/STO0.5 is the optimized heterostructure; it achieved a high photocurrent density of 11 μA/cm2 at 1.23 V bias vs. RHE and an applied bias photo-to-current efficiency of 4.1 × 10−3% at 0.76 V vs. RHE, as demonstrated by the photoelectrochemical measurements. These results underline the role of the two phases intermixing LFO and STO at the appropriate content to yield a high-performing photoanode ascribed to efficient charge separation and transfer. This suggests that LFO0.5/STO0.5 could be a potential candidate for the development of efficient photoanodes for hydrogen generation via photoelectrocatalytic water splitting.

Details

Title
Strong Intermixing Effects of LFO1−x/STOx toward the Development of Efficient Photoanodes for Photoelectrocatalytic Applications
Author
Nassereddine, Yassine 1   VIAFID ORCID Logo  ; Benyoussef, Manal 1 ; Rajput, Nitul S 2   VIAFID ORCID Logo  ; Saitzek, Sébastien 3 ; Mimoun El Marssi 1 ; Jouiad, Mustapha 1 

 Laboratory of Physics of Condensed Matter, University of Picardie Jules Verne, Scientific Pole, 33 Rue Saint-Leu, CEDEX 1, 80039 Amiens, France; [email protected] (Y.N.); 
 Advanced Materials Research Center, Technology Innovation Institute, Abu Dhabi P.O. Box 9639, United Arab Emirates 
 Catalyse et Chimie du Solide (UCCS), University of Artois, CNRS, Centrale Lille, ENSCL, UMR 8181, 62300 Lens, France 
First page
2863
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2888351536
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.