Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The gravity wave produced by typhoons has been an essential subject of study that concerns numerous researchers. The damage to human beings and infrastructure in coastal regions caused by typhoon disasters annually is very severe, and analyzing gravity wave variation is a reliable approach to research typhoons. High-frequency surface wave radar (HFSWR) as an over-the-horizon radar can achieve real-time monitoring of an extensive sea area and space. This paper derived the gravity wave perturbation spectrum by handling high-frequency surface wave radar data during typhoons. The gravity wave spectrum data were examined by applying the chaos examination approaches of the Lyapunov exponent and phase-space reconstruction to the gravity wave spectrum data after processing and extraction. The reconstructed phase space had a specific shape in a certain direction, with the maximum Lyapunov exponent greater than zero. The gravity wave spectrum data are suggested to have chaotic properties through two chaos examination approaches. This paper demonstrated that the gravity waves observed by a radar have chaotic properties through the measurement data of HFSWR. While the chaotic properties suggest that observed gravity wave data are predictable in the short term, they are unpredictable in the long term. Predicting gravity wave data is important for understanding the chaotic properties of the atmosphere and for future gravity wave prediction.

Details

Title
Chaotic Properties of Gravity Waves during Typhoons Observed by HFSWR
Author
Chen, Xuekun  VIAFID ORCID Logo  ; Yang, Hongjuan  VIAFID ORCID Logo  ; Lyu, Zhe  VIAFID ORCID Logo  ; Yu, Changjun  VIAFID ORCID Logo 
First page
5235
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2888374071
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.