Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

To unveil and shape the molecular connectivity in (metallo)porphyrin–carbon nanotube hybrids are of main relevance for the multiple medicinal, photoelectronic, catalytic, and photocatalytic applications of these materials. Multi-walled carbon nanotubes (MWCNTs) were modified through 1,3-dipolar cycloaddition reactions with azomethine ylides generated in situ and carrying pentafluorophenyl groups, followed by immobilization of the β-amino-tetraphenylporphyrinate Zn(II). The functionalities were confirmed via XPS and FTIR, whereas Raman spectroscopy showed disruptions on the graphitic carbon nanotube surface upon both steps. The functionalization extension, measured via TGA mass loss and corroborated via XPS, was 0.2 mmol·g−1. Photophysical studies attest to the presence of the different porphyrin–carbon nanotube connectivity in the nanohybrid. Significantly different emission spectra and fluorescence anisotropy of 0.15–0.3 were observed upon variation of excitation wavelength. Vis-NIR absorption and flash photolysis experiments showed energy/charge transfer in the photoactivated nanohybrid. Moreover, evidence was found for direct reaction of amino groups with a carbon nanotube surface in the presence of molecular dipoles such as the zwitterionic sarcosine amino acid.

Details

Title
Hybrid Zn-β-Aminoporphyrin–Carbon Nanotubes: Pyrrolidine and Direct Covalent Linkage Recognition, and Multiple-Photo Response
Author
Rebelo, Susana L H 1   VIAFID ORCID Logo  ; Laia, César A T 2   VIAFID ORCID Logo  ; Szefczyk, Monika 3 ; Guedes, Alexandra 4   VIAFID ORCID Logo  ; Silva, Ana M G 1   VIAFID ORCID Logo  ; Freire, Cristina 1   VIAFID ORCID Logo 

 LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal 
 LAQV/REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal 
 LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland 
 Instituto de Ciências da Terra, Pólo da FCUP, Departamento de Geociências, Ambiente e Ordenamento do Território, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal 
First page
7438
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2888375626
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.