Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Short message services (SMS), microblogging tools, instant message apps, and commercial websites produce numerous short text messages every day. These short text messages are usually guaranteed to reach mass audience with low cost. Spammers take advantage of short texts by sending bulk malicious or unwanted messages. Short texts are difficult to classify because of their shortness, sparsity, rapidness, and informal writing. The effectiveness of the hidden Markov model (HMM) for short text classification has been illustrated in our previous study. However, the HMM has limited capability to handle new words, which are mostly generated by informal writing. In this paper, a hybrid model is proposed to address the informal writing issue by weighting new words for fast short text filtering with high accuracy. The hybrid model consists of an artificial neural network (ANN) and an HMM, which are used for new word weighting and spam filtering, respectively. The weight of a new word is calculated based on the weights of its neighbor, along with the spam and ham (i.e., not spam) probabilities of short text message predicted by the ANN. Performance evaluations on benchmark datasets, including the SMS message data maintained by University of California, Irvine; the movie reviews, and the customer reviews are conducted. The hybrid model operates at a significantly higher speed than deep learning models. The experiment results show that the proposed hybrid model outperforms other prominent machine learning algorithms, achieving a good balance between filtering throughput and accuracy.

Details

Title
A Hybrid Model with New Word Weighting for Fast Filtering Spam Short Texts
Author
Tian Xia 1   VIAFID ORCID Logo  ; Chen, Xuemin 2   VIAFID ORCID Logo  ; Wang, Jiacun 3   VIAFID ORCID Logo  ; Qiu, Feng 4 

 School of Computer and Information Engineering, Shanghai Polytechnic University, Shanghai 201209, China; [email protected] 
 Department of Engineering, Texas Southern University, Houston, TX 77004, USA; [email protected] 
 Department of Computer Science and Software Engineering, Monmouth University, West Long Branch, NJ 07764, USA; [email protected] 
 Institute of Artificial Intelligence on Education, Shanghai Normal University, Shanghai 200234, China 
First page
8975
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2888380762
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.