It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Paclitaxel (Taxol™), an alkaloid of diterpenoid family, is one of the most widely used anti-cancer drugs due to its effectiveness against a variety of tumors. Rather than directly extraction and chemical synthesis of paclitaxel or its intermediates from yew plants, construction of a microbial cell factory for paclitaxel biosynthesis will be more efficient and sustainable. The challenge for biosynthesis of paclitaxel lies on the insufficient precursor, such as taxadien-5α-ol. In this study, we report a recombinant Escherichia coli strain constructed with a heterologous mevalonate pathway, a taxadiene synthase from yew, and a cytochrome P450-mediated oxygenation system for the de novo production of taxadien-5α-ol, the first product of the multi-step taxadiene oxygenation metabolism. The key enzymes including taxadiene synthases and cytochrome P450 reductases were screened, and the linker for fusing taxadiene-5α-hydroxylase with its reductase partner cytochrome P450 reductase was optimized. By reducing the metabolic burden and optimizing the fermentation conditions, the final production of total oxygenated taxanes was raised up to 27 mg L−1 in a 50-mL flask cultivation, of which the yield of taxadien-5α-ol was 7.0 mg L−1, representing approximately a 12-fold and 23-fold improvements, respectively, as compared with the initial titers. The engineered MVA pathway for the overproduction of terpenoid precursors can serve as an efficient platform for the production of other valuable terpenoids. Highlights We report a recombinant Escherichia coli BL21(DE3) strain for de novo production of taxadien-5α-ol, the key precursor of paclitaxel. Through screening of key enzymes and the fermentation condition optimization, the final production of total oxygenated taxanes was raised up to 27 mg L−1 in 50-mL flask cultivation, of which the yield of taxadien-5α-ol was 7.0 mg L−1, representing approximately a 12-fold and 23-fold improvements, respectively. It is believed that the strategy used in this study will guide in the synthesis of terpenoids.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, Shanghai, People’s Republic of China (GRID:grid.28056.39) (ISNI:0000 0001 2163 4895)