Abstract

Background

Enhancers play a crucial role in gene regulation, and some active enhancers produce noncoding RNAs known as enhancer RNAs (eRNAs) bi-directionally. The most commonly used method for detecting eRNAs is CAGE-seq, but the instability of eRNAs in vivo leads to data noise in sequencing results. Unfortunately, there is currently a lack of research focused on the noise inherent in CAGE-seq data, and few approaches have been developed for predicting eRNAs. Bridging this gap and developing widely applicable eRNA prediction models is of utmost importance.

Results

In this study, we proposed a method to reduce false positives in the identification of eRNAs by adjusting the statistical distribution of expression levels. We also developed eRNA prediction models using joint gene expressions, DNA methylation, and histone modification. These models achieved impressive performance with an AUC value of approximately 0.95 for intra-cell prediction and 0.9 for cross-cell prediction.

Conclusions

Our method effectively attenuates the noise generated by stochastic RNA production, resulting in more accurate detection of eRNAs. Furthermore, our eRNA prediction model exhibited significant accuracy in both intra-cell and cross-cell validation, highlighting its robustness and potential application in various cellular contexts.

Details

Title
Predicting active enhancers with DNA methylation and histone modification
Author
Luo, Ximei; Li, Qun; Tang, Yifan; Liu, Yan; Zou, Quan; Zheng, Jie; Zhang, Ying; Xu, Lei
Pages
1-16
Section
Research
Publication year
2023
Publication date
2023
Publisher
BioMed Central
e-ISSN
14712105
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2890056519
Copyright
© 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.