Abstract

Cerebral vasospasm significantly contributes to poor prognosis and mortality in patients with aneurysmal subarachnoid hemorrhage. Current research indicates that the pathological and physiological mechanisms of cerebral vasospasm may be attributed to the exposure of blood vessels to toxic substances, such as oxyhaemoglobin and inflammation factors. These factors disrupt cerebral vascular homeostasis. Vascular homeostasis is maintained by the extracellular matrix (ECM) and related cell surface receptors, such as integrins, characterised by collagen deposition, collagen crosslinking, and elastin degradation within the vascular ECM. It involves interactions between the ECM and smooth muscle cells as well as endothelial cells. Its biological activities are particularly crucial in the context of cerebral vasospasm. Therefore, regulating ECM homeostasis may represent a novel therapeutic target for cerebral vasospasm. This review explores the potential pathogenic mechanisms of cerebral vasospasm and the impacts of ECM protein metabolism on the vascular wall during ECM remodelling. Additionally, we underscore the significance of an ECM protein imbalance, which can lead to increased ECM stiffness and activation of the YAP pathway, resulting in vascular remodelling. Lastly, we discuss future research directions.

Details

Title
Pathogenic mechanisms and therapeutic implications of extracellular matrix remodelling in cerebral vasospasm
Author
Hu, Ziliang; Deng, Xinpeng; Zhou, Shengjun; Zhou, Chenhui; Shen, Menglu; Gao, Xiang; Huang, Yi
Pages
1-22
Section
Review
Publication year
2023
Publication date
2023
Publisher
BioMed Central
e-ISSN
20458118
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2890075162
Copyright
© 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.