It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
The COVID-19 pandemic stressed public health systems worldwide due to emergence of several highly transmissible variants of concern. Diverse and complex intervention policies deployed over the last years have shown varied effectiveness in controlling the pandemic. However, a systematic analysis and modelling of the combined effects of different viral lineages and complex intervention policies remains a challenge due to the lack of suitable measures of pandemic inequality and nonlinear effects.
Methods
Using large-scale agent-based modelling and a high-resolution computational simulation matching census-based demographics of Australia, we carried out a systematic comparative analysis of several COVID-19 pandemic scenarios. The scenarios covered two most recent Australian census years (2016 and 2021), three variants of concern (ancestral, Delta and Omicron), and five representative intervention policies. We introduced pandemic Lorenz curves measuring an unequal distribution of the pandemic severity across local areas. We also quantified pandemic biomodality, distinguishing between urban and regional waves, and measured bifurcations in the effectiveness of interventions.
Results
We quantified nonlinear effects of population heterogeneity on the pandemic severity, highlighting that (i) the population growth amplifies pandemic peaks, (ii) the changes in population size amplify the peak incidence more than the changes in density, and (iii) the pandemic severity is distributed unequally across local areas. We also examined and delineated the effects of urbanisation on the incidence bimodality, distinguishing between urban and regional pandemic waves. Finally, we quantified and examined the impact of school closures, complemented by partial interventions, and identified the conditions when inclusion of school closures may decisively control the transmission.
Conclusions
Public health response to long-lasting pandemics must be frequently reviewed and adapted to demographic changes. To control recurrent waves, mass-vaccination rollouts need to be complemented by partial NPIs. Healthcare and vaccination resources need to be prioritised towards the localities and regions with high population growth and/or high density.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer