It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Acute compartment syndrome (ACS) is one of the most common complications of musculoskeletal injury, leading to the necrosis and demise of skeletal muscle cells. Our previous study showed that embryonic stem cells-derived mesenchymal stem cells (ESC–MSCs) are novel therapeutics in ACS treatment. As extracellular vesicles (EVs) are rapidly gaining attention as cell-free therapeutics that have advantages over parental stem cells, the therapeutic potential and mechanisms of EVs from ESC–MSCs on ACS need to be explored.
Method
In the present study, we examined the protective effects in the experimental ACS rat model and investigated the role of macrophages in mediating these effects. Next, we used transcriptome sequencing to explore the mechanisms by which ESC–MSC-EVs regulate macrophage polarization. Furthermore, miRNA sequencing was performed on ESC–MSC-EVs to identify miRNA candidates associated with macrophage polarization.
Results
We found that intravenous administration of ESC–MSC-EVs, given at the time of fasciotomy, significantly promotes the anti-inflammation process, angiogenesis, and functional recovery of muscle in ACS. The beneficial effects were associated with ESC–MSC-EVs affecting macrophage polarization by delivering various miRNAs which regulate NF-κB, JAK/STAT, and PI3K/AKT pathways. Our data further illustrate that ESC–MSC-EVs mainly modulate macrophage polarization via the miR-21/PTEN, miR-320a/PTEN, miR-423/NLRP3, miR-100/mTOR, and miR-26a/TLR3 axes.
Conclusion
Together, our results demonstrated the beneficial effects of ESC–MSC-EVs in ACS, wherein the miRNAs present in ESC–MSC-EVs regulate the polarization of macrophages.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer