It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Polydispersity affects physical properties of polymeric materials, such as solubility in solvents. Most biobased, synthetic, recycled, mixed, copolymerized, and self-assembled polymers vary in size and chemical structure. Using solvent fractionation, this variety in molecular features can be reduced and a selection of the sizes and molecular features of the polymers can be made. The significant chemical and physical dispersity of these polymers, however, complicates theoretical solubility predictions. A theoretical description of the fractionation process can guide experiments and material design. During solvent fractioning of polymers, a part of the polydisperse distribution of the polymers dissolves. To describe this process, this paper presents a theoretical tool using Flory–Huggins theory combined with molecular mass distributions and distributions in the number of functional groups. This paper quantifies how chemical and physical polydispersity of polymers affects their solubility. Comparison of theoretical predictions with experimental measurements of lignin in a mixture of solvents shows that multiple molecular features can be described well using a single set of parameters, giving a tool to theoretically predict the selective solubility of polymers.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology , P.O. Box 513, 5600 MB Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology , P.O. Box 513, 5600 MB Eindhoven, The Netherlands
2 Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology , P.O. Box 513, 5600 MB Eindhoven, The Netherlands; Shell Energy Transition Campus Amsterdam , Grasweg 31, 1031 HW Amsterdam, The Netherlands