It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In patients with heart failure, guideline directed medical therapy improves outcomes and requires close patient monitoring. Pulmonary artery pressure monitors permit remote assessment of cardiopulmonary haemodynamics and facilitate early intervention that has been shown to decrease heart failure hospitalization. Pressure sensors implanted in the pulmonary vasculature are stabilized through passive or active interaction with the anatomy and communicate with an external reader to relay invasively measured pressure by radiofrequency. A body mass index > 35 kg/m2 and chest circumference > 165 cm prevent use due to poor communication. Pulmonary vasculature anatomy is variable between patients and the pulmonary artery size, angulation of vessels and depth of sensor location from the chest wall in heart failure patients who may be candidates for pressure sensors remains largely unexamined. The present study analyses the size, angulation, and depth of the pulmonary artery at the position of implantation of two pulmonary artery pressure sensors: the CardioMEMS sensor typically implanted in the left pulmonary artery and the Cordella sensor implanted in the right pulmonary artery. Thirty-four computed tomography pulmonary angiograms from patients with heart failure were analysed using the MIMICS software. Distance from the bifurcation of the pulmonary artery to the implant site was shorter for the right pulmonary artery (4.55 ± 0.64 cm vs. 7.4 ± 1.3 cm) and vessel diameter at the implant site was larger (17.15 ± 2.87 mm vs. 11.83 ± 2.30 mm). Link distance (length of the communication path between sensor and reader) was shorter for the left pulmonary artery (9.40 ± 1.43 mm vs. 12.54 ± 1.37 mm). Therefore, the detailed analysis of pulmonary arterial anatomy using computed tomography pulmonary angiograms may alter the choice of implant location to reduce the risk of sensor migration and improve readability by minimizing sensor-to-reader link distance.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 University of Sheffield, Sheffield, UK (GRID:grid.11835.3e) (ISNI:0000 0004 1936 9262); Sheffield University Teaching Hospitals NHS Trust, Sheffield, UK (GRID:grid.11835.3e) (ISNI:0000 0004 1936 9262); School of Medicine and Population Health, Division of Clinical Medicine, Sheffield, UK (GRID:grid.11835.3e)
2 University of Sheffield, Sheffield, UK (GRID:grid.11835.3e) (ISNI:0000 0004 1936 9262); School of Medicine and Population Health, Division of Clinical Medicine, Sheffield, UK (GRID:grid.11835.3e)
3 Sheffield University Teaching Hospitals NHS Trust, Sheffield, UK (GRID:grid.11835.3e) (ISNI:0000 0004 1936 9262)