It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Boredom is an aversive mental state that is typically evoked by monotony and drives individuals to seek novel information. Despite this effect on individual behavior, the consequences of boredom for collective behavior remain elusive. Here, we introduce an agent-based model of collective fashion behavior in which simplified agents interact randomly and repeatedly choose alternatives from a circular space of color variants. Agents are endowed with a memory of past experiences and a boredom parameter, promoting avoidance of monotony. Simulating collective color trends with this model captures aspects of real trends observed in fashion magazines. We manipulate the two parameters and observe that the boredom parameter is essential for perpetuating fashion dynamics in our model. Furthermore, highly bored agents lead future population trends, when acting coherently or being highly popular. Taken together, our study illustrates that highly bored individuals can guide collective dynamics of a population to continuously explore different variants of behavior.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Johannes Gutenberg University Mainz, Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Mainz, Germany (GRID:grid.5802.f) (ISNI:0000 0001 1941 7111)