It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The donor-acceptor (D-A) type of conjugated polymers has emerged as the paradigm of the third generation of electronically conducting polymers demonstrating improved infrared activity and intrinsic electronic conductivity. Judicious selection of donor (D) and acceptor (A) monomers for copolymerization can further fine-tune these properties. Notably, for such refinement, natural compounds provide many conjugated molecules with various functional groups. Berberine cation (Ber+) found in Coscinium fenestratum has extensive conjugation and contains both an electron deficient isoquinolium A moiety and electron-rich D-type methylenedioxy and methoxy groups. The incorporation of natural products in electronic materials is a novel area of research which opens a wide scope for future electronic and optoelectronic devices. Investigation of their fundamental properties via computer simulations is therefore important. In this study, quantum chemical calculations are performed using density functional theory (DFT) to investigate the electronic and optical properties of oligomers of Ber+ and 3,4-ethylenedioxythiophene (EDOT) and to explore the possibilities for homo-polymerization of Ber+ and its copolymerization with EDOT. It has been revealed that homo-polymerization is not favoured but copolymerization with EDOT is possible. As such, Ber+ was copolymerized with EDOT and the copolymers formed by electro-polymerization are extensively characterised and the D-A behaviour of the copolymers verified. Furthermore, the theoretical predictions have been compared with the experimental data.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer