Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Neural networks are the state-of-the-art solution to image-processing tasks. Some of these neural networks are relatively simple, but the popular convolutional neural networks (CNNs) can consist of hundreds of layers. Unfortunately, the excellent recognition accuracy of CNNs comes at the cost of very high computational complexity, and one of the current challenges is managing the power, delay and physical size limitations of hardware solutions dedicated to accelerating their inference process. In this paper, we describe the embedding of an eye detection system on a Zynq XCZU4EV UltraScale+ multiprocessor system-on-chip (MPSoC). This eye detector is used in the application framework of a remote iris recognition system, which requires high resolution images captured at high speed as input. Given the high rate of eye regions detected per second, it is also important that the detector only provides as output images eyes that are in focus, discarding all those seriously affected by defocus blur. In this proposal, the network will be trained only with correctly focused eye images to assess whether it can differentiate this pattern from that associated with the out-of-focus eye image. Exploiting the neural network’s advantage of being able to work with multi-channel input, the inputs to the CNN will be the grey level image and a high-pass filtered version, typically used to determine whether the iris is in focus or not. The complete system synthetises other cores and implements CNN using the so-called Deep Learning Processor Unit (DPU), the intellectual property (IP) block released by AMD/Xilinx. Compared to previous hardware designs for implementing FPGA-based CNNs, the DPU IP supports extensive deep learning core functions, and developers can leverage DPUs to conveniently accelerate CNN inference. Experimental validation has been successfully addressed in a real-world scenario working with walking subjects, demonstrating that it is possible to detect only eye images that are in focus. This prototype module includes a CMOS digital image sensor that provides 16 Mpixel images, and outputs a stream of detected eyes as 640 × 480 images. The module correctly discards up to 95% of the eyes present in the input images as not being correctly focused.

Details

Title
FPGA-Based CNN for Eye Detection in an Iris Recognition at a Distance System
Author
Ruiz-Beltrán, Camilo A  VIAFID ORCID Logo  ; Romero-Garcés, Adrián  VIAFID ORCID Logo  ; González-García, Martín  VIAFID ORCID Logo  ; Marfil, Rebeca  VIAFID ORCID Logo  ; Bandera, Antonio  VIAFID ORCID Logo 
First page
4713
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2893040785
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.