Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study addresses the pressing environmental problem of the emissions of ecotoxic heavy metals from high-temperature waste combustion processes, including incineration and pyrolysis. Such emissions pose a serious threat to ecosystems and human health. This study investigated the behaviour of the heavy metals Cu, Ni, and Pb during the combustion of various waste materials such as plastic waste, pharmaceutical waste, and pesticide waste. To limit the release of heavy metals into the exhaust gas stream, various additives were used: divanadium pentoxide (V2O5), borax (Na2B4O7), and their mixtures with calcium oxide (CaO). Additionally, this study examined the impact of the content of chlorine heteroatoms (Cl) in burned waste materials on the emission levels of Cu, Ni, and Pb. The findings shed light on the mobility of ecotoxic heavy metals in high-temperature waste incineration processes (1273, 1373 K) and offer insight into strategies to improve their immobilisation in grate residues. At a temperature of 1273 K, V2O5 with CaO reduced Pb emissions by ~65% for plastic waste and by ~40% for pesticide.

Details

Title
Thermal Destruction of Waste and the Impact of the Presence of Cl and S in Waste on the Emissions of Cu, Ni, and Pb and Their Immobilisation in the Ash Residue
Author
Król, Danuta 1 ; Motyl, Przemysław 2   VIAFID ORCID Logo  ; Poskrobko, Sławomir 3 ; Łuniewski, Stanisław 4 

 Faculty of Energy and Environmental Engineering, Silesian University of Technology, 14-100 Gliwice, Poland; [email protected] 
 Faculty of Mechanical Engineering, Radom University, 26-600 Radom, Poland 
 Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, 15-351 Białystok, Poland; [email protected] 
 Faculty of Economic Science, Eastern European University of Applied Sciences, 15-472 Białystok, Poland; [email protected]; „ASTWA” Ltd. Waste Management Services, 15-102 Białystok, Poland 
First page
7603
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2893048109
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.