Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The interaction between integrin α4β7 and mucosal vascular addressin cell-adhesion molecule-1 (MAdCAM-1) facilitates the adhesion of circulating lymphocytes to the surface of high endothelial venules in inflammatory bowel diseases (IBDs). Lymphocyte adhesion is a multistep cascade involving the tethering, rolling, stable adhesion, crawling, and migration of cells, with integrin α4β7 being involved in rolling and stable adhesions. Targeting the integrin α4β7–MAdCAM-1 interaction may help decrease inflammation in IBDs. This interaction is regulated by force; however, the underlying mechanism remains unknown. Here, we investigate this mechanism using a parallel plate flow chamber and atomic force microscopy. The results reveal an initial increase in the lifetime of the integrin α4β7–MAdCAM-1 interaction followed by a decrease with an increasing force. This was manifested in a two-state curve regulated via a catch-bond–slip-bond conversion regardless of Ca2+ and/or Mg2+ availability. In contrast, the mean rolling velocity of cells initially decreased and then increased with the increasing force, indicating the flow-enhanced adhesion. Longer tether lifetimes of single bonds and lower rolling velocities mediated by multiple bonds were observed in the presence of Mg2+ rather than Ca2+. Similar results were obtained when examining the adhesion to substrates co-coated with chemokine CC motif ligand 25 and MAdCAM-1, as opposed to substrates coated with MAdCAM-1 alone. In conclusion, the integrin α4β7–MAdCAM-1 interaction occurs via ion- and cytokine-dependent flow-enhanced adhesion processes and is regulated via a catch-bond mechanism.

Details

Title
The Force-Dependent Mechanism of an Integrin α4β7–MAdCAM-1 Interaction
Author
Su, Youmin 1 ; Luo, Zhiqing 2 ; Sun, Dongshan 2 ; Yang, Bishan 2 ; Li, Quhuan 1   VIAFID ORCID Logo 

 School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China; [email protected] (Y.S.); [email protected] (Z.L.); [email protected] (D.S.); ; Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou 510006, China 
 School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China; [email protected] (Y.S.); [email protected] (Z.L.); [email protected] (D.S.); 
First page
16062
Publication year
2023
Publication date
2023
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2893073683
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.