Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Although the sound absorption coefficients of conventional and nanofiber nonwoven fabrics (NF-NWFs) have been the subject of many previous studies, few studies have considered the estimation of transmission loss. Reported herein is an experimental and theoretical study into estimating the transmission loss of NF-NWFs using four estimation models, i.e., the Rayleigh, Miki, and Komatsu models, and the simplified limp frame model (SLFM), with the model results compared against the experimental data. The transmission loss of the NF-NWF was determined from the propagation constant, and characteristic impedance was calculated using the estimation model and the transfer matrix method. The validity of each estimation method was examined by comparing its estimated values with the experimental values measured using a four-microphone impedance measurement tube. The proposed SLFM is more suitable for estimating the transmission loss of NF-NWFs than the conventional Rayleigh, Miki, and Komatsu models.

Details

Title
Estimation of Sound Transmission Loss in Nanofiber Nonwoven Fabrics: Comparison of Conventional Models and the Simplified Limp Frame Model
Author
Sakamoto, Shuichi 1   VIAFID ORCID Logo  ; Hasegawa, Tsukasa 2 ; Ikeda, Koki 2 

 Department of Engineering, Niigata University, Ikarashi 2-no-cho 8050, Nishi-ku, Niigata City 950-2181, Japan 
 Graduate School of Science and Technology, Niigata University, Ikarashi 2-no-cho 8050, Nishi-ku, Niigata City 950-2181, Japan 
First page
2947
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2893121485
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.