Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Bridge sensors are widely used in military and civilian fields, and their demand gradually increases each year. Digital sensors are widely used in the military and civilian fields. High-precision and low-power analog-to-digital converters (ADCs) as sensor read-out circuits are a research hotspot. Sigma-delta ADC circuits based on switched-capacitor topology have the advantages of high signal-to-noise ratio (SNR), good linearity, and better compatibility with CMOS processes. In this work, a fourth-order feed-forward sigma-delta modulator and a digital decimation filter are designed and implemented with a correlated double sampling technique (CDS) to suppress pre-integrator low-frequency noise. This work used an active pre-compensator circuit for deep phase compensation to improve the system’s stability in the sigma-delta modulator. The modulator’s local feedback factor is designed to be adjustable off-chip to eliminate the effect of process errors. A three-stage cascade structure was chosen for the post-stage digital filter, significantly reducing the number of operations and the required memory cells in the digital circuit. Finally, the layout design and engineering circuit were fabricated by a standard 0.35 μm CMOS process from Shanghai Hua Hong with a chip area of 9 mm2. At a 5 V voltage supply and sampling frequency of 6.144 MHz, the modulator power consumption is 13 mW, the maximum input signal amplitude is −3 dBFs, the 1 Hz dynamic range is about 118 dB, the modulator signal-to-noise ratio can reach 110.5 dB when the signal bandwidth is 24 kHz, the practical bit is about 18.05 bits, and the harmonic distortion is about −113 dB, which meets the design requirements. The output bit stream is 24 bits.

Details

Title
Study of a High-Precision Read-Out Integrated Circuit for Bridge Sensors
Author
Li, Xiangyu 1 ; Wang, Pengjun 1 ; Ye, Hao 1   VIAFID ORCID Logo  ; He, Haonan 2 ; Zhang, Xiaowei 2   VIAFID ORCID Logo 

 College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China; [email protected] (X.L.); [email protected] (H.Y.) 
 Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China; [email protected] 
First page
2013
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
2072666X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2893169267
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.