Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Monitoring snowmelt dynamics in mountains is crucial to understand water releases downstream. Sentinel-1 (S-1) synthetic-aperture radar (SAR) has become one of the most widely used techniques to achieve this aim due to its high frequency of acquisitions and all-weather capability. This work aims to understand the possibilities of S-1 SAR imagery to capture snowmelt dynamics and related changes in streamflow response in semi-arid mountains. The results proved that S-1 SAR imagery was able not only to capture the final spring melting but also all melting cycles that commonly appear throughout the year in these types of environments. The general change detection approach to identify wet snow was adapted for these regions using as reference the average S-1 SAR image from the previous summer, and a threshold of −3.00 dB, which has been assessed using Landsat images as reference dataset obtaining a general accuracy of 0.79. In addition, four different types of melting-runoff onsets depending on physical snow condition were identified. When translating that at the catchment scale, distributed melting-runoff onset maps were defined to better understand the spatiotemporal evolution of melting dynamics. Finally, a linear connection between melting dynamics and streamflow was found for long-lasting melting cycles, with a determination coefficient (R2) ranging from 0.62 to 0.83 and an average delay between the melting onset and streamflow peak of about 21 days.

Details

Title
Characterizing Snow Dynamics in Semi-Arid Mountain Regions with Multitemporal Sentinel-1 Imagery: A Case Study in the Sierra Nevada, Spain
Author
Torralbo, Pedro 1   VIAFID ORCID Logo  ; Pimentel, Rafael 1   VIAFID ORCID Logo  ; Polo, Maria José 1   VIAFID ORCID Logo  ; Notarnicola, Claudia 2   VIAFID ORCID Logo 

 Fluvial Dynamics and Hydrology Research Group, Andalusian Institute for Earth System Research, University of Córdoba, Campus Rabanales, Edificio Leonardo da Vinci, Área de Ingeniería Hidráulica, 14071 Córdoba, Spain; [email protected] (R.P.); [email protected] (M.J.P.); Department of Agronomy, Unit of Excellence María de Maeztu (DAUCO), University of Córdoba, 14071 Córdoba, Spain 
 Institute for Earth Observation, EURAC Research, 39100 Bolzano, Italy; [email protected] 
First page
5365
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2893342845
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.