Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Forest change monitoring is a fundamental and routine task for forest survey and planning departments, and the resulting forest change information acts as an underlying asset for sustainable forest management strategy development, ecological quality assessment, and carbon cycle research. The traditional ground-based manual monitoring of forest change has the disadvantages of high time and labor costs, low accessibility, and poor timeliness over wide regions. Remote sensing technology has become a popular approach for multi-scale forest change monitoring due to its multiple available spatial, spectral, temporal, and radiometric resolutions and wide coverage. Particularly, the free access policy of long time series archive data of Landsat (around 50 years) has triggered many automated analysis algorithms for landscape-scale forest change analysis, such as VCT, LandTrendr, BFAST, and CCDC. These automated algorithms differ in their principles, parameter settings, execution complexity, and disturbance types to be detected. Thus, selecting a suitable algorithm to satisfy the particular forest management demands is an urgent and challenging task for forest managers in a given forested area. In this study, Lishui City, Zhejiang Province, a typical plantation forest region in Southern China where forest disturbance widely and frequently exists, was selected as the study area. Based on the GEE platform, the algorithmic adaptability of VCT, LandTrendr, and CCDC in monitoring abrupt forest disturbance events was compared and assessed. The results showed that the kappa coefficients of the abrupt disturbance events detected by the three algorithms were at 0.704 (LandTrendr), 0.660 (VCT), and 0.727 (CCDC), and the corresponding overall accuracies were at 0.852, 0.830, and 0.862, respectively. The validated disturbance occurrence time consistency reached nearly 80% for the three algorithms. In light of the characteristics of forest disturbance occurrence in southeastern China as well as the algorithmic complexity, efficiency, and adaptability, LandTrendr was recommended as the most suitable one in this region or other similar regions. Overall, the forest change monitoring process based on GEE is becoming more simplified and easily implemented, and the comparisons and tradeoffs in this study provide a reference for the choice of long time series forest monitoring algorithms.

Details

Title
Mapping Forest Abrupt Disturbance Events in Southeastern China—Comparisons and Tradeoffs of Landsat Time Series Analysis Algorithms
Author
Ding, Ning 1 ; Li, Mingshi 1   VIAFID ORCID Logo 

 Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; [email protected]; College of Forestry, Nanjing Forestry University, Nanjing 210037, China 
First page
5408
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2893344767
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.