Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Object detection is important in many applications, such as autonomous driving. While 2D images lack depth information and are sensitive to environmental conditions, 3D point clouds can provide accurate depth information and a more descriptive environment. However, sparsity is always a challenge in single-frame point cloud object detection. This paper introduces a two-stage proposal-based feature fusion method for object detection using multiple frames. The proposed method, called proposal features fusion (PFF), utilizes a cosine-similarity approach to associate proposals from multiple frames and employs an attention weighted fusion (AWF) module to merge features from these proposals. It allows for feature fusion specific to individual objects and offers lower computational complexity while achieving higher precision. The experimental results on the nuScenes dataset demonstrate the effectiveness of our approach, achieving an mAP of 46.7%, which is 1.3% higher than the state-of-the-art 3D object detection method.

Details

Title
3D Object Detection Using Multiple-Frame Proposal Features Fusion
Author
Huang, Minyuan 1 ; Leung, Henry 1 ; Hou, Ming 2 

 Department of Electrical and Software Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; [email protected] 
 Defence Research and Development Canada (DRDC), Toronto, ON B3K 5X5, Canada; [email protected] 
First page
9162
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2893354136
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.