It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In two recent papers, approximate solutions for compact non-axisymmetric contact problems of homogeneous and power-law graded elastic bodies have been suggested, which provide explicit analytical relations for the force–approach relation, the size and the shape of the contact area, as well as for the pressure distribution therein. These solutions were derived for profiles, which only slightly deviate from the axisymmetric shape. In the present paper, they undergo an extensive testing and validation by comparison of solutions with a great variety of profile shapes with numerical solutions obtained by the fast Fourier transform (FFT)-assisted boundary element method (BEM). Examples are given with quite significant deviations from axial symmetry and show surprisingly good agreement with numerical solutions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Technische Universität Berlin, Institute of Mechanics, Berlin, Germany (GRID:grid.6734.6) (ISNI:0000 0001 2292 8254)