It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Techniques for the semantic segmentation of remotely sensed imageries for building footprint identification have been widely studied and several supervised and unsupervised techniques have been proposed. The ability to perform online mapping and accurate segmentation on a large scale by taking into account the multifariousness inherent in aerial images has important implications. In this paper we propose a new method for building footprint identification using multiresolution analysis-based self-attention technique. The scheme is promising to be robust in the face of variability inherent in remotely sensed images by virtue of the capability to extract features at multiple scales and focusing on areas containing meaningful information. We demonstrate the robustness of the proposed method by comparing it against several state-of-the-art techniques using aerial imagery with varying spatial resolution and building clutter and it achieves better accuracy around 95% even under widely disparate image characteristics. We also evaluate the ability for online mapping on an embedded graphic processing unit (GPU) and compare it against different compute engines and it is found that the proposed method on GPU outperforms the other methods in terms of accuracy and processing time.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Electronics and Telecommunication, Symbiosis Institute of Technology, Symbiosis International University, Pune, India
2 Department of Electrical Engineering, Veermata Jijabai Technological Institute, Mumbai, India
3 Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai, India