It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In today’s interconnected world, network traffic is replete with adversarial attacks. As technology evolves, these attacks are also becoming increasingly sophisticated, making them even harder to detect. Fortunately, artificial intelligence (AI) and, specifically machine learning (ML), have shown great success in fast and accurate detection, classification, and even analysis of such threats. Accordingly, there is a growing body of literature addressing how subfields of AI/ML (e.g., natural language processing (NLP)) are getting leveraged to accurately detect evasive malicious patterns in network traffic. In this paper, we delve into the current advancements in ML-based network traffic classification using image visualization. Through a rigorous experimental methodology, we first explore the process of network traffic to image conversion. Subsequently, we investigate how machine learning techniques can effectively leverage image visualization to accurately classify evasive malicious traces within network traffic. Through the utilization of production-level tools and utilities in realistic experiments, our proposed solution achieves an impressive accuracy rate of 99.48% in detecting fileless malware, which is widely regarded as one of the most elusive classes of malicious software.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 North Carolina A&T State University, Department of Computer Science, College of Engineering, Greensboro, USA (GRID:grid.261037.1) (ISNI:0000 0001 0287 4439)
2 Palo Alto Networks, Inc., Santa Clara, USA (GRID:grid.497103.8)