It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Emergence of highly transmissible Omicron subvariants led to increased SARS-CoV-2 infection and disease in children. However, minimal knowledge exists regarding the neutralization capacity against circulating Omicron BA.4/BA.5, BA.2.75, BQ.1, BQ.1.1 and XBB.1 subvariants following SARS-CoV-2 vaccination in children versus during acute or convalescent COVID-19, or versus multisystem inflammatory syndrome (MIS-C). Here, we evaluate virus-neutralizing capacity against SARS-CoV-2 variants in 151 age-stratified children ( <5, 5–11, 12–21 years old) hospitalized with acute severe COVID-19 or MIS-C or convalescent mild (outpatient) infection compared with 62 age-stratified vaccinated children. An age-associated effect on neutralizing antibodies is observed against SARS-CoV-2 following acute COVID-19 or vaccination. The primary series BNT162b2 mRNA vaccinated adolescents show higher vaccine-homologous WA-1 neutralizing titers compared with <12 years vaccinated children. Post-infection antibodies did not neutralize BQ.1, BQ.1.1 and XBB.1 subvariants. In contrast, monovalent mRNA vaccination induces more cross-neutralizing antibodies in young children <5 years against BQ.1, BQ.1.1 and XBB.1 variants compared with ≥5 years old children. Our study demonstrates that in children, infection and monovalent vaccination-induced neutralization activity is low against BQ.1, BQ.1.1 and XBB.1 variants. These findings suggest a need for improved SARS-CoV-2 vaccines to induce durable, more cross-reactive neutralizing antibodies to provide effective protection against emerging variants in children.
In this work, authors investigate the virus-neutralizing capacity in children against circulating BQ.1, BQ.1.1 and XBB.1 SARS-CoV-2 variants. Vaccination induced more neutralizing antibodies against BQ.1.1 and XBB.1 in youngest children ( < 5 years) compared with >5 years children.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details





1 Center for Biologics Evaluation and Research (CBER), FDA, Division of Viral Products, Silver Spring, USA (GRID:grid.290496.0) (ISNI:0000 0001 1945 2072)
2 Massachusetts General Hospital for Children, Harvard Medical School, Mucosal Immunology and Biology Research Center, Boston, USA (GRID:grid.38142.3c) (ISNI:000000041936754X)
3 Harvard Medical School, Department of Anesthesia, Boston, USA (GRID:grid.38142.3c) (ISNI:000000041936754X); Critical Care and Pain Medicine, Boston Children’s Hospital, Department of Anesthesiology, Boston, USA (GRID:grid.2515.3) (ISNI:0000 0004 0378 8438)
4 Critical Care and Pain Medicine, Boston Children’s Hospital, Department of Anesthesiology, Boston, USA (GRID:grid.2515.3) (ISNI:0000 0004 0378 8438)