Abstract

A long-standing trade-off exists between improving crystallinity and minimizing particle size in the synthesis of perovskite-type transition-metal oxynitride photocatalysts via the thermal nitridation of commonly used metal oxide and carbonate precursors. Here, we overcome this limitation to fabricate ATaO2N (A = Sr, Ca, Ba) single nanocrystals with particle sizes of several tens of nanometers, excellent crystallinity and tunable long-wavelength response via thermal nitridation of mixtures of tantalum disulfide, metal hydroxides (A(OH)2), and molten-salt fluxes (e.g., SrCl2) as precursors. The SrTaO2N nanocrystals modified with a tailored Ir–Pt alloy@Cr2O3 cocatalyst evolved H2 around two orders of magnitude more efficiently than the previously reported SrTaO2N photocatalysts, with a record solar-to-hydrogen energy conversion efficiency of 0.15% for SrTaO2N in Z-scheme water splitting. Our findings enable the synthesis of perovskite-type transition-metal oxynitride nanocrystals by thermal nitridation and pave the way for manufacturing advanced long-wavelength-responsive particulate photocatalysts for efficient solar energy conversion.

A trade-off exists between improving crystallinity and minimizing particle size in the synthesis of perovskite-type transition-metal oxynitrides. The authors break this limitation to fabricate sub-50 nm ATaO2N (A = Sr, Ca, Ba) single nanocrystals exhibiting improved photocatalytic water-splitting performance

Details

Title
Sub-50 nm perovskite-type tantalum-based oxynitride single crystals with enhanced photoactivity for water splitting
Author
Xiao, Jiadong 1   VIAFID ORCID Logo  ; Nakabayashi, Mamiko 2   VIAFID ORCID Logo  ; Hisatomi, Takashi 1   VIAFID ORCID Logo  ; Vequizo, Junie Jhon M. 1   VIAFID ORCID Logo  ; Li, Wenpeng 1 ; Chen, Kaihong 1   VIAFID ORCID Logo  ; Tao, Xiaoping 1 ; Yamakata, Akira 3 ; Shibata, Naoya 2   VIAFID ORCID Logo  ; Takata, Tsuyoshi 1 ; Inoue, Yasunobu 4 ; Domen, Kazunari 5   VIAFID ORCID Logo 

 Shinshu University, Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Nagano-shi, Japan (GRID:grid.263518.b) (ISNI:0000 0001 1507 4692) 
 The University of Tokyo, Institute of Engineering Innovation, School of Engineering, Tokyo, Japan (GRID:grid.26999.3d) (ISNI:0000 0001 2151 536X) 
 Okayama University, Graduate School of Natural Science and Technology, Kita-ku, Japan (GRID:grid.261356.5) (ISNI:0000 0001 1302 4472) 
 Japan Technological Research Association of Artificial Photosynthetic Chemical Process (ARPChem), Tokyo, Japan (GRID:grid.420184.b) (ISNI:0000 0000 9936 4488) 
 Shinshu University, Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Nagano-shi, Japan (GRID:grid.263518.b) (ISNI:0000 0001 1507 4692); The University of Tokyo, Office of University Professors, Tokyo, Japan (GRID:grid.26999.3d) (ISNI:0000 0001 2151 536X) 
Pages
8030
Publication year
2023
Publication date
2023
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2897521915
Copyright
© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.