It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This study presents a nitrogen-doped microporous carbon nanospheres (N@MCNs) prepared by a facile polymerization–carbonization process using low-cost styrene. The N element in situ introduces polystyrene (PS) nanospheres via emulsion polymerization of styrene with cyanuric chloride as crosslinking agent, and then carbonization obtains N@MCNs. The as-prepared carbon nanospheres possess the complete spherical structure and adjustable nitrogen amount by controlling the relative proportion of tetrachloromethane and cyanuric chloride. The friction performance of N@MCNs as lubricating oil additives was surveyed utilizing the friction experiment of ball-disc structure. The results showed that N@MCNs exhibit superb reduction performance of friction and wear. When the addition of N@MCNs was 0.06 wt%, the friction coefficient of PAO-10 decreased from 0.188 to 0.105, and the wear volume reduced by 94.4%. The width and depth of wear marks of N@MCNs decreased by 49.2% and 94.5%, respectively. The carrying capacity of load was rocketed from 100 to 400 N concurrently. Through the analysis of the lubrication mechanism, the result manifested that the prepared N@MCNs enter clearance of the friction pair, transform the sliding friction into the mixed friction of sliding and rolling, and repair the contact surface through the repair effect. Furthermore, the tribochemical reaction between nanoparticles and friction pairs forms a protective film containing nitride and metal oxides, which can avert direct contact with the matrix and improve the tribological properties. This experiment showed that nitrogen-doped polystyrene-based carbon nanospheres prepared by in-situ doping are the promising materials for wear resistance and reducing friction. This preparing method can be ulteriorly expanded to multi-element co-permeable materials. Nitrogen and boron co-doped carbon nanospheres (B,N@MCNs) were prepared by mixed carbonization of N-enriched PS and boric acid, and exhibited high load carrying capacity and good tribological properties.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Northwestern Polytechnical University, State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Xi’an, China (GRID:grid.440588.5) (ISNI:0000 0001 0307 1240)
2 Northwestern Polytechnical University, State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Xi’an, China (GRID:grid.440588.5) (ISNI:0000 0001 0307 1240); Chinese Academy of Sciences, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Lanzhou, China (GRID:grid.9227.e) (ISNI:0000000119573309)