It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Climate change is leading to more extreme weather hazards, forcing human populations to be displaced. We employ explainable machine learning techniques to model and understand internal displacement flows and patterns from observational data alone. For this purpose, a large, harmonized, global database of disaster-induced movements in the presence of floods, storms, and landslides during 2016–2021 is presented. We account for environmental, societal, and economic factors to predict the number of displaced persons per event in the affected regions. Here we show that displacements can be primarily attributed to the combination of poor household conditions and intense precipitation, as revealed through the interpretation of the trained models using both Shapley values and causality-based methods. We hence provide empirical evidence that differential or uneven vulnerability exists and provide a means for its quantification, which could help advance evidence-based mitigation and adaptation planning efforts.
Ronco and colleagues analyze disaster-induced movements in the presence of floods, storms, and landslides during 2016–2021, providing empirical evidence that differential vulnerability exists and quantifying its extent. They achieve this by employing explainable machine learning techniques to model and understand internal displacement flows and patterns from observational data.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details









1 Universitat de València, Image Processing Laboratory (IPL), Valencia, Spain (GRID:grid.5338.d) (ISNI:0000 0001 2173 938X)
2 Internal Displacement Monitoring Centre (IDMC), Geneva, Switzerland (GRID:grid.500368.8)