It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The current methods of non-contact livestock body measurement directly deal with the low-quality point cloud data of livestock, which have low robustness and lack practicality. On the one hand, the success rate of keypoint detection for livestock body measurement is low. Due to the severe occlusion and noise in the point cloud data, body measurements of some data cannot be performed. On the other hand, the key frames need to be manually selected from the point cloud sequence during processing. Inspired by the work of 3D reconstruction based on animal statistical shape models, we implement the construction and learning of the statistical shape model of real cattle. Given the establishment of the statistical shape model of cattle, a 3D reconstruction and body measurement approach of real cattle based on low-quality point cloud data is proposed. Nine indicators are calculated and the overall estimation MAPE (Mean Absolute Percentage Error) is 10.27%. The whole process of the body measurement algorithm proposed in our paper can be extended to other quadrupeds.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 College of Land Science and Technology, China Agricultural University, Beijing 100083, China; College of Land Science and Technology, China Agricultural University, Beijing 100083, China
2 College of Land Science and Technology, China Agricultural University, Beijing 100083, China; College of Land Science and Technology, China Agricultural University, Beijing 100083, China; College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
3 College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China; College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China