Abstract

通过对靳庆芳等学者构造的具有良好密码学性质的布尔函数进行改造, 得到两类偶数变元的平衡布尔函数, 它们在假设广义Tu-Deng猜想成立的条件下具有最优的代数免疫度. 进而对这两类布尔函数进行级联, 得到一类奇数变元的1-阶弹性布尔函数, 它们在假设广义Tu-Deng猜想成立的条件下具有至少次优的代数免疫度, 且具有最优的代数次数和较高的非线性度. 特别地, 当构造函数时的某些参数取特殊值时, 在不需要假定任何猜想的前提下所构造的函数具有至少次优的代数免疫度.

Alternate abstract:

By modifying the functions with good cryptographic properties constructed by Jin et al., we construct two classes of balanced Boolean functions which have optimal algebraic immunity assuming the correctness of the generalized Tu-Deng conjecture. Considering concatenations of functions from these two classes, we obtain a class of 1-resilient Boolean functions which have suboptimal algebraic immunity assuming the correctness of the generalized Tu-Deng conjecture, and have optimal algebraic degree and high nonlinearity. For some special instances of parameters, functions belonging to this class have suboptimal algebraic immunity without assumption of the correctness of any combinatorial conjectures.

Details

Title
具有良好密码学性质的布尔函数的级联构造
Author
Bao-Feng, WU; Dong-Dai, LIN; 吴保峰; 林东岱
Pages
64-71
Section
学术论文
Publication year
2014
Publication date
2014
Publisher
Chinese Association for Cryptologic Research, Journal of Cryptologic Research
ISSN
2097-4116
Source type
Scholarly Journal
Language of publication
Chinese
ProQuest document ID
2898893537
Copyright
© 2014. This work is published under http://www.jcr.cacrnet.org.cn/EN/column/column4.shtml Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.