Full Text

Turn on search term navigation

© 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The Antarctic Ice Sheet represents the largest source of uncertainty in future sea level rise projections, with a contribution to sea level by 2100 ranging from -5 to 43 cm of sea level equivalent under high carbon emission scenarios estimated by the recent Ice Sheet Model Intercomparison for CMIP6 (ISMIP6). ISMIP6 highlighted the different behaviors of the East and West Antarctic ice sheets, as well as the possible role of increased surface mass balance in offsetting the dynamic ice loss in response to changing oceanic conditions in ice shelf cavities. However, the detailed contribution of individual glaciers, as well as the partitioning of uncertainty associated with this ensemble, have not yet been investigated. Here, we analyze the ISMIP6 results for high carbon emission scenarios, focusing on key glaciers around the Antarctic Ice Sheet, and we quantify their projected dynamic mass loss, defined here as mass loss through increased ice discharge into the ocean in response to changing oceanic conditions. We highlight glaciers contributing the most to sea level rise, as well as their vulnerability to changes in oceanic conditions. We then investigate the different sources of uncertainty and their relative role in projections, for the entire continent and for key individual glaciers. We show that, in addition to Thwaites and Pine Island glaciers in West Antarctica, Totten and Moscow University glaciers in East Antarctica present comparable future dynamic mass loss and high sensitivity to ice shelf basal melt. The overall uncertainty in additional dynamic mass loss in response to changing oceanic conditions, compared to a scenario with constant oceanic conditions, is dominated by the choice of ice sheet model, accounting for 52 % of the total uncertainty of the Antarctic dynamic mass loss in 2100. Its relative role for the most dynamic glaciers varies between 14 % for MacAyeal and Whillans ice streams and 56 % for Pine Island Glacier at the end of the century. The uncertainty associated with the choice of climate model increases over time and reaches 13 % of the uncertainty by 2100 for the Antarctic Ice Sheet but varies between 4 % for Thwaites Glacier and 53 % for Whillans Ice Stream. The uncertainty associated with the ice–climate interaction, which captures different treatments of oceanic forcings such as the choice of melt parameterization, its calibration, and simulated ice shelf geometries, accounts for 22 % of the uncertainty at the ice sheet scale but reaches 36 % and 39 % for Institute Ice Stream and Thwaites Glacier, respectively, by 2100. Overall, this study helps inform future research by highlighting the sectors of the ice sheet most vulnerable to oceanic warming over the 21st century and by quantifying the main sources of uncertainty.

Details

Title
Insights into the vulnerability of Antarctic glaciers from the ISMIP6 ice sheet model ensemble and associated uncertainty
Author
Seroussi, Hélène 1   VIAFID ORCID Logo  ; Verjans, Vincent 2 ; Nowicki, Sophie 3   VIAFID ORCID Logo  ; Payne, Antony J 4   VIAFID ORCID Logo  ; Goelzer, Heiko 5   VIAFID ORCID Logo  ; Lipscomb, William H 6   VIAFID ORCID Logo  ; Abe-Ouchi, Ayako 7   VIAFID ORCID Logo  ; Agosta, Cécile 8   VIAFID ORCID Logo  ; Albrecht, Torsten 9   VIAFID ORCID Logo  ; Asay-Davis, Xylar 10   VIAFID ORCID Logo  ; Barthel, Alice 10   VIAFID ORCID Logo  ; Calov, Reinhard 9 ; Cullather, Richard 11 ; Dumas, Christophe 8 ; Galton-Fenzi, Benjamin K 12   VIAFID ORCID Logo  ; Gladstone, Rupert 13   VIAFID ORCID Logo  ; Golledge, Nicholas R 14   VIAFID ORCID Logo  ; Gregory, Jonathan M 15   VIAFID ORCID Logo  ; Greve, Ralf 16   VIAFID ORCID Logo  ; Hattermann, Tore 17   VIAFID ORCID Logo  ; Hoffman, Matthew J 10   VIAFID ORCID Logo  ; Humbert, Angelika 18   VIAFID ORCID Logo  ; Huybrechts, Philippe 19   VIAFID ORCID Logo  ; Jourdain, Nicolas C 20   VIAFID ORCID Logo  ; Kleiner, Thomas 21   VIAFID ORCID Logo  ; Larour, Eric 22 ; Leguy, Gunter R 6   VIAFID ORCID Logo  ; Lowry, Daniel P 23   VIAFID ORCID Logo  ; Little, Chistopher M 24 ; Morlighem, Mathieu 25   VIAFID ORCID Logo  ; Pattyn, Frank 26 ; Tyler Pelle 27   VIAFID ORCID Logo  ; Price, Stephen F 10   VIAFID ORCID Logo  ; Quiquet, Aurélien 28   VIAFID ORCID Logo  ; Reese, Ronja 29   VIAFID ORCID Logo  ; Schlegel, Nicole-Jeanne 30   VIAFID ORCID Logo  ; Shepherd, Andrew 31 ; Simon, Erika 11 ; Smith, Robin S 32   VIAFID ORCID Logo  ; Straneo, Fiammetta 27   VIAFID ORCID Logo  ; Sun, Sainan 31   VIAFID ORCID Logo  ; Trusel, Luke D 33   VIAFID ORCID Logo  ; Jonas Van Breedam 19   VIAFID ORCID Logo  ; Peter Van Katwyk 34 ; Roderik S W van de Wal 35 ; Winkelmann, Ricarda 36   VIAFID ORCID Logo  ; Chen, Zhao 37   VIAFID ORCID Logo  ; Zhang, Tong 38 ; Zwinger, Thomas 39   VIAFID ORCID Logo 

 Thayer School of Engineering, Dartmouth College, Hanover, NH, USA 
 Center for Climate Physics, Institute for Basic Science, Busan, Republic of Korea 
 Geology Department and RENEW Institute, University at Buffalo, Buffalo, NY, USA 
 Centre for Polar Observation and Modelling, University of Bristol, Bristol, United Kingdom 
 NORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, Bergen, Norway 
 Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO, USA 
 Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan 
 Laboratoire des Sciences du Climat et de l'Environnement, LSCE-IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France 
 Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 60 12 03, 14412 Potsdam, Germany 
10  Fluid Dynamics and Solid Mechanics Group, Los Alamos National Laboratory, Los Alamos, NM, USA 
11  NASA Goddard Space Flight Center, Greenbelt, MD, USA 
12  Australian Antarctic Division, Kingston, Tasmania, Australia; Australian Centre for Excellence in Antarctic Science, University of Tasmania, Hobart, Australia; Australian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia 
13  Arctic Centre, University of Lapland, Rovaniemi, Finland 
14  Antarctic Research Centre, Victoria University of Wellington, Wellington, New Zealand 
15  National Centre for Atmospheric Science, University of Reading, Reading, United Kingdom; Met Office Hadley Centre, Exeter, United Kingdom 
16  Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan; Arctic Research Center, Hokkaido University, Sapporo, Japan 
17  Norwegian Polar Institute, iC3: Centre for ice, Cryosphere, Carbon and Climate, Tromsø, Norway 
18  Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany; Department of Geoscience, University of Bremen, Bremen, Germany 
19  Earth System Science and Departement Geografie, Vrije Universiteit Brussel, Brussels, Belgium 
20  Univ. Grenoble Alpes/CNRS/IRD/G-INP, Institut des Géosciences de l'Environnement, Grenoble, France 
21  Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany 
22  Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 
23  GNS Science, Lower Hutt, New Zealand 
24  Atmospheric and Environmental Research, Inc., Lexington, MA, USA 
25  Department of Earth Sciences, Dartmouth College, Hanover, NH, USA 
26  Laboratoire de Glaciologie, Université Libre de Bruxelles, Brussels, Belgium 
27  Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA 
28  Laboratoire des Sciences du Climat et de l'Environnement, LSCE-IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France; Univ. Grenoble Alpes/CNRS/IRD/G-INP, Institut des Géosciences de l'Environnement, Grenoble, France 
29  Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 60 12 03, 14412 Potsdam, Germany; Department of Geography and Environmental Sciences, University of Northumbria, Newcastle upon Tyne, United Kingdom 
30  NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 
31  Department of Geography and Environmental Sciences, University of Northumbria, Newcastle upon Tyne, United Kingdom 
32  National Centre for Atmospheric Science, University of Reading, Reading, United Kingdom 
33  Department of Geography, Pennsylvania State University, University Park, PA, USA 
34  Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI, USA 
35  Institute for Marine and Atmospheric research Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Physical Geography, Utrecht University, Utrecht, the Netherlands 
36  Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 60 12 03, 14412 Potsdam, Germany; Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24–25, 14476 Potsdam, Germany 
37  Australian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia 
38  State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China 
39  CSC-IT Center for Science, Espoo, Finland 
Pages
5197-5217
Publication year
2023
Publication date
2023
Publisher
Copernicus GmbH
ISSN
19940424
e-ISSN
19940416
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2899271756
Copyright
© 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.