Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Spring frost is an extreme temperature event that poses a significant threat to winter wheat production and consequently jeopardizes food security. In the context of climate change, the accelerated phenology of winter wheat due to global warming advances the frost-sensitive stage, thereby escalating the risk of spring frost damage. Present techniques for monitoring and assessing frost damage heavily rely on meteorological data, controlled field experiments and crop model simulations, which cannot accurately depict the actual disaster situation for winter wheat. In this study, we propose a novel method that utilizes remote sensing index and statistical data to ascertain the spatial distribution of spring frost damage to winter wheat and evaluate the extent of damage. This method was employed to monitor and assess the spring frost damage event that occurred in Shandong province from 3 to 7 April 2018. The result shows that beginning on 3 April, the daily minimum temperature in western Shandong Province dropped significantly (decreased by 17.93 °C), accompanied by precipitation. The daily minimum temperature reached the lowest on 7 April (−1.48 °C). The growth of winter wheat began to be inhibited on 3 April 2018, and this process persisted until 13 April. Subsequently, the impact of spring frost damage on winter wheat ceased and growth gradually resumed. The affected area of winter wheat spanned 545,000 mu with an accuracy rate of 89.72%. Severely afflicted areas are mainly located in the cities of Jining, Zaozhuang, Dezhou, Heze, Liaocheng, Jinan and Tai’an in western Shandong province, and the yield reduction rates were 5.27~12.02%. Our monitoring results were consistent with the distribution of county-level winter wheat yield in 2018 in Shandong province, the daily minimum temperature distribution during spring frost and severely afflicted areas reported by the news. This method proves effective in delineating the spatial distribution of agricultural disasters and monitoring the extent of disaster damage. Furthermore, it can provide reliable information of disaster area and geospatial location for the agricultural department, thereby aiding in disaster damage assessment and post-disaster replanting.

Details

Title
Monitoring and Mapping Winter Wheat Spring Frost Damage with MODIS Data and Statistical Data
Author
Chen, Di 1   VIAFID ORCID Logo  ; Liu, Buchun 1 ; Tianjie Lei 1 ; Yang, Xiaojuan 1   VIAFID ORCID Logo  ; Liu, Yuan 1 ; Bai, Wei 1 ; Han, Rui 1 ; Bai, Huiqing 1 ; Chang, Naijie 2   VIAFID ORCID Logo 

 Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; [email protected] (D.C.); [email protected] (T.L.); [email protected] (X.Y.); [email protected] (Y.L.); [email protected] (W.B.); [email protected] (R.H.); [email protected] (H.B.); National Engineering Laboratory of Efficient Crop Water Use and Disaster Reduction, Chinese Academy of Agricultural Sciences, Beijing 100081, China 
 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China 
First page
3954
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
22237747
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2899413171
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.