Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Methylphenidate (MPD), known as Ritalin, is a psychostimulant used to treat children, adults, and the elderly. MPD exerts its effects through increasing concentrations of dopamine (DA), norepinephrine (NE), and serotonin (5-HT) in the synaptic cleft. Concomitant behavioral and neuronal recording from the ventral tegmental area (VTA), locus coeruleus (LC), and from the dorsal raphe (DR) nucleus, which are the sources of DA, NE, and 5-HT to the mesocorticolimbic circuit, were investigated following acute and repetitive (chronic) saline, 0.6, 2.5, or 10.0 mg/kg MPD. Animals received daily saline or MPD administration on experimental days 1 to 6 (ED1–6), followed by a 3-day washout period and MPD rechallenge on ED10. Each chronic MPD dose elicits behavioral sensitization in some animals while inducing behavioral tolerance in others. The uniqueness of this study is in the evaluation of neuronal activity based on the behavioral response to chronic MPD. Neuronal excitation was observed mainly in brain areas of animals exhibiting behavioral sensitization, while neuronal attenuation following chronic MPD was observed in animals expressing behavioral tolerance. Different ratios of excitatory/inhibitory neuronal responses were obtained from the VTA, LC, or DR following chronic MPD. Thus, each brain area responds differently to each MPD dose used, suggesting that DA, NE, and 5-HT in the VTA, LC, and DR exert different effects.

Details

Title
Dopamine, Norepinephrine and Serotonin Participate Differently in Methylphenidate Action in Concomitant Behavioral and Ventral Tegmental Area, Locus Coeruleus and Dorsal Raphe Neuronal Study in Young Rats
Author
Reyes-Vasquez, Cruz 1 ; Jones, Zachary 2 ; Tang, Bin 2 ; Dafny, Nachum 2 

 Physiology Department, Medical School, National Autonomous University of Mexico, Mexico City 04510, Mexico 
 Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center, 6431 Fannin Street, Houston, TX 77030, USA 
First page
16628
Publication year
2023
Publication date
2023
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2899429698
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.