Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Graphene oxide (GO) is an oxidized form of graphene accommodating various oxygen-containing functional groups such as hydroxyl, epoxy, and carboxyl groups on its surface. GO has been extensively utilized in various biomedical applications including the delivery of biomolecules and the development of biosensors owing to its beneficial properties such as high surface area, nucleic acid adsorption, and fluorescence quenching through fluorescence resonance energy transfer (FRET). However, despite these favorable properties, the direct utilization of GO in these applications is often limited by low dispersibility in a physiological medium, cytotoxicity, low biocompatibility, and a strong binding affinity of nucleic acids to GO surface. The large surface area of GO and the presence of various functional groups on its surface make it highly amenable to facile surface modifications, offering scope for GO surface functionalization to overcome these limitations. When polyethylene glycol (PEG), which is a biocompatible polymer, is conjugated to GO, the PEGylated GO enhances the biocompatibility and dispersibility, reduces cytotoxicity, and allows controlled drug delivery with controllable binding affinity towards nucleic acid. PEG-engrafted GO retains the beneficial properties of GO while effectively addressing its limitations, rendering it suitable for various biomedical applications. In this review, we present the recent advancements of PEGylated GO in gene/drug delivery and the facilitation of nucleic acid amplification techniques, which aid in the development of therapeutic and diagnostic tools, respectively.

Details

Title
Poly(ethylene glycol)-Engrafted Graphene Oxide for Gene Delivery and Nucleic Acid Amplification
Author
Chauhan, Khushbu 1   VIAFID ORCID Logo  ; Woo, Jin 2 ; Jung, Woong 2   VIAFID ORCID Logo  ; Dong-Eun, Kim 1   VIAFID ORCID Logo 

 Department of Bioscience and Biotechnology, Konkuk University, 120 Neundong-ro, Seoul 05029, Republic of Korea 
 Department of Emergency Medicine, Kyung Hee University College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea[email protected] (W.J.) 
First page
7434
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2899430377
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.