Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Land surface temperature (LST) is an important physical quantity in the energy exchange of hydrothermal cycles between the land and near-surface atmosphere at regional and global scales. However, the traditional thermal infrared transfer equation (RTE) and LST retrieval algorithms are always based on the underlying assumptions of homogeneity and isotropy, which ignore the terrain effect influence of a heterogeneous topography. It can cause significant errors when traditional RTE and other algorithms are used to retrieve LST in such mountainous research. In this study, the mountainous thermal infrared transfer model considering terrain effect correction is used to retrieve the mountainous LST using FY-3D MERSI-II data, and the in situ site data are simultaneously utilized to evaluate the performance of the iterative single-channel algorithm. The elevation of this study region ranges from 500 m to 2200 m, whereas the minimum SVF can reach 0.75. Results show that the spatial distribution of the retrieved LST is similar to topographic features, and the LST has larger values in the lower valley and smaller values in the higher ridge. In addition, the overall bias and RMSE between the retrieved LSTs and five in situ stations are respectively −0.70 K and 2.64 K, which demonstrates this iterative single-channel algorithm performs well in taking into account the terrain effect influence. Accuracy of the LST estimation is meaningful for mountainous ecological environmental monitoring and global climate research. Such an adjacent terrain effect correction should be considered in future research on complex terrains, especially with high spatial resolution TIR data.

Details

Title
Retrieval of Land Surface Temperature over Mountainous Areas Using Fengyun-3D MERSI-II Data
Author
Xue, Yixuan 1 ; Zhu, Xiaolin 2 ; Wu, Zihao 3 ; Si-Bo Duan 3 

 School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; [email protected] 
 ICube Laboratory, UMR 7357, CNRS-University of Strasbourg, 300 bd Sebastien Brant, CS 10413, F-67412 Illkirch Cedex, France 
 Key Laboratory of Agricultural Remote Sensing, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; [email protected] (Z.W.); [email protected] (S.-B.D.) 
First page
5465
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2899449452
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.