Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The Kravarsko area is located in a hilly region of northern Croatia, where numerous landslides endanger and damage houses, roads, water systems, and power lines. Nevertheless, natural hazard management plans are practically non-existent. Therefore, during the initial research, a landslide inventory was developed for the Kravarsko pilot area based on remote sensing data (high-resolution digital elevation models), and some of the landslides were investigated in detail. However, due to the complexity and vulnerability of the area, additional zoning of landslide-susceptible areas was needed. As a result, a slope gradient map, a map of engineering geological units, and a land-cover map were developed as inputs for the landslide susceptibility map. Additionally, based on the available data and a landslide inventory, a terrain stability map was developed for landslide management. Analysis and map development were performed within a geographical information system environment, and the terrain stability map with key infrastructure data was determined to be the “most user-friendly and practically usable” resource for non-expert users in natural hazard management, for example, the local administration. At the same time, the terrain stability map can easily provide practical information for the local community and population about the expected landslide “risk” depending on the location of infrastructure, estates, or objects of interest or for the purposes of future planning.

Details

Title
Remote Sensing and GIS in Landslide Management: An Example from the Kravarsko Area, Croatia
Author
Podolszki, Laszlo; Karlović, Igor
First page
5519
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2899449474
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.