Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Spatial navigation patterns in indoor space usage can reveal important cues about the cognitive health of participants. In this work, we present a low-cost, scalable, open-source edge computing system using Bluetooth low energy (BLE) beacons for tracking indoor movements in a large, 1700 m2 facility used to carry out therapeutic activities for participants with mild cognitive impairment (MCI). The facility is instrumented with 39 edge computing systems, along with an on-premise fog server. The participants carry a BLE beacon, in which BLE signals are received and analyzed by the edge computing systems. Edge computing systems are sparsely distributed in the wide, complex indoor space, challenging the standard trilateration technique for localizing subjects, which assumes a dense installation of BLE beacons. We propose a graph trilateration approach that considers the temporal density of hits from the BLE beacon to surrounding edge devices to handle the inconsistent coverage of edge devices. This proposed method helps us tackle the varying signal strength, which leads to intermittent detection of beacons. The proposed method can pinpoint the positions of multiple participants with an average error of 4.4 m and over 85% accuracy in region-level localization across the entire study area. Our experimental results, evaluated in a clinical environment, suggest that an ordinary medical facility can be transformed into a smart space that enables automatic assessment of individuals’ movements, which may reflect health status or response to treatment.

Details

Title
Graph Trilateration for Indoor Localization in Sparsely Distributed Edge Computing Devices in Complex Environments Using Bluetooth Technology
Author
Kiarashi, Yashar 1 ; Saghafi, Soheil 1   VIAFID ORCID Logo  ; Das, Barun 1   VIAFID ORCID Logo  ; Hegde, Chaitra 2 ; Venkata Siva Krishna Madala 2   VIAFID ORCID Logo  ; Nakum, ArjunSinh 2 ; Singh, Ratan 2 ; Tweedy, Robert 1   VIAFID ORCID Logo  ; Doiron, Matthew 3 ; Rodriguez, Amy D 3 ; Levey, Allan I 3 ; Clifford, Gari D 4 ; Kwon, Hyeokhyen 1   VIAFID ORCID Logo 

 Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, GA 30322, USA; [email protected] (Y.K.); [email protected] (S.S.); [email protected] (H.K.) 
 School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA 
 Department of Neurology, School of Medicine, Emory University, Atlanta, GA 30322, USA[email protected] (A.D.R.); [email protected] (A.I.L.) 
 Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, GA 30322, USA; [email protected] (Y.K.); [email protected] (S.S.); [email protected] (H.K.); Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA 
First page
9517
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2899459389
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.