Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The scenario of renewable energy generation significantly affects the probabilistic distribution system analysis. To reflect the probabilistic characteristics of actual data, this paper proposed a scenario generation method that can reflect the spatiotemporal characteristics of wind power generation and the probabilistic characteristics of forecast errors. The scenario generation method consists of a process of sampling random numbers and a process of inverse sampling using the cumulative distribution function. In sampling random numbers, random numbers that mimic the spatiotemporal correlation of power generation were generated using the copula function. Furthermore, the cumulative distribution functions of forecast errors according to power generation bins were used, thereby reflecting the probabilistic characteristics of forecast errors. The wind power generation scenarios in Jeju Island, generated by the proposed method, were analyzed through various indices that can assess accuracy. As a result, it was confirmed that by using the proposed scenario generation method, scenarios similar to actual data can be generated, which in turn allows for preparation of situations with a high probability of occurrence within the distribution system.

Details

Title
A Wind Power Scenario Generation Method Based on Copula Functions and Forecast Errors
Author
Yoo, Jaehyun  VIAFID ORCID Logo  ; Son, Yongju  VIAFID ORCID Logo  ; Yoon, Myungseok; Choi, Sungyun  VIAFID ORCID Logo 
First page
16536
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2899462421
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.