It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The Miocene tectonics of Papua New Guinea, where subduction, arc-continent collision, and changes in subduction direction are considered to have occurred, is very complex and various tectonic models have been proposed. The Maramuni arc, active in the Miocene, is composed of a chain of granitoid bodies. As the chain-like distribution indicates the generation of igneous activities in a wide range of the same tectonic settings, the study of the Maramuni arc magmatism is important for elucidating the geologic events of the time. We provide data on the petrological and geochemical characteristics of the Morobe Granodiorite that form part of the Maramuni arc. The Morobe Granodiorite consists of metaluminous I-type granitoids, belonging to the medium-K to high-K series. The whole-rock major element variations in the granitoids can be explained by the fractionation of hornblende and plagioclase. They are generally within the composition range of experimental partial melts of amphibolites, and the whole-rock trace element compositions have characteristics of slab failure magma rather than arc. This suggests that the granitoids were generated by partial melting of the torn slab after slab failure. The mafic microgranular enclaves (MMEs) in the granitoids are classified as shoshonite, and their trace element compositions suggest that they were formed by partial melting of phlogopite-bearing mantle. The occurrences of native gold and barite within the MME show that MMEs transport Au from the mantle metasomatized by slab-derived sediment melt and/or fluid to the crustal magma chamber.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Earth Resource Science, Faculty of International Resource Sciences, Akita University, Akita 010‑8502, Japan
2 Geological Survey Division, Mineral Resources Authority, National Capital District 0121, Port Moresby, P.O. Box 1906, Papua New Guinea