It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In this study, miniaturized cruciform biaxial tensile specimens were optimized by finite element simulation software Ansys to vary five geometric parameters. The optimized specimens were utilized to characterize the biaxial tensile properties of 316L stainless steel fabricated through selective laser melting (SLM), with the two loading directions being vertical (X) and parallel (Y) to the building direction. It was discovered that at load ratios of 4:2 and 2:4, the yield strengths along X and Y orientations reached their respective maxima. By comparing the experimentally obtained yield loci against predictions by theoretical criteria including Mises, Hill48 and Hosford, it was found that the Hill48 anisotropic criterion corresponded most closely with the experimental results, while the other two criteria exhibited considerably larger deviations. Therefore, Hill48 was concluded to most accurately describe the yielding behaviors of SLM 316L under complex loading conditions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Nanjing Tech University, School of Mechanical and Power Engineering, Nanjing, People’s Republic of China (GRID:grid.412022.7) (ISNI:0000 0000 9389 5210); Institute of Reliability Centered Manufacturing (IRcM), Nanjing, People’s Republic of China (GRID:grid.412022.7)
2 Ufa University of Science and Technology, Department of Materials Science and Physics of Metals, Ufa, Russia (GRID:grid.412022.7)