It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Functional materials with large hygrothermal inertia can passively mitigate indoor temperature and humidity variations, thus improving indoor environmental quality and reducing energy demand for heating, ventilation, and air-conditioning (HVAC) systems. In this study, a novel functional phase-change humidity control material (PCHCM) was developed based on the integration of microencapsulated phase-change material (MicPCM) and novel moisture adsorbent: Metal-Organic Frameworks (MOFs). The novel MOF-based PCHCM is a dual-functional composite material. It can simultaneously uptake/release heat and humidity from indoor air and control the hygrothermal environment passively. The materials characterizations show that the new MOF-based PCHCM has better thermal and moisture buffering ability than most conventional building materials. The effect of the new material on building energy conservation was calculated by a newly developed HAMT-enthalpy model. The simulation results show that MOF-based PCHCM can effectively moderate the fluctuations of temperature and relative humidity and reduce building energy consumption in most climates worldwide. The maximum energy-saving potential could reach up to 35% in hot-dry climates. The paper will guide the application and further development of dual-functional PCHCM composites under different climates.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Environmental and Resource Engineering, Technical University of Denmark , 2800 Lyngby , Denmark