Abstract

Functional materials with large hygrothermal inertia can passively mitigate indoor temperature and humidity variations, thus improving indoor environmental quality and reducing energy demand for heating, ventilation, and air-conditioning (HVAC) systems. In this study, a novel functional phase-change humidity control material (PCHCM) was developed based on the integration of microencapsulated phase-change material (MicPCM) and novel moisture adsorbent: Metal-Organic Frameworks (MOFs). The novel MOF-based PCHCM is a dual-functional composite material. It can simultaneously uptake/release heat and humidity from indoor air and control the hygrothermal environment passively. The materials characterizations show that the new MOF-based PCHCM has better thermal and moisture buffering ability than most conventional building materials. The effect of the new material on building energy conservation was calculated by a newly developed HAMT-enthalpy model. The simulation results show that MOF-based PCHCM can effectively moderate the fluctuations of temperature and relative humidity and reduce building energy consumption in most climates worldwide. The maximum energy-saving potential could reach up to 35% in hot-dry climates. The paper will guide the application and further development of dual-functional PCHCM composites under different climates.

Details

Title
Novel functional materials capable of humidity regulation and thermal storage for building energy conservation
Author
Hou, Pu Ming 1 ; Qin, Menghao 1 

 Department of Environmental and Resource Engineering, Technical University of Denmark , 2800 Lyngby , Denmark 
First page
012071
Publication year
2023
Publication date
Dec 2023
Publisher
IOP Publishing
ISSN
17426588
e-ISSN
17426596
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2900677759
Copyright
Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.