It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This paper presents a method of visual LiDAR odometry and forest mapping, leveraging tree trunk detection and LiDAR localization techniques. In environments like dense forests, where smooth GPS signals are unreliable, we employ camera and LiDAR sensors to accurately estimate the robot's position. However, forested or orchard settings introduce unique challenges, including a diverse mixture of trees, tall grass, and uneven terrain. To address these complexities, we propose a distance-based filtering method to extract data composed solely of tree trunk information from 2D LiDAR. By restoring arc data from the LiDAR sensor to its circular shape, we obtain position and radius measurements of reference trees in the LiDAR coordinate system. Then, these values are stored in a comprehensive tree trunk database. Our approach combines visual-based SLAM and LiDAR-based SLAM independently, followed by an integration step using the Extended Kalman Filter (EKF) to improve odometry estimation. Utilizing the obtained odometry information and the EKF, we generate a tree map based on observed trees. In addition, we use the tree position in the map as the landmark to reduce the localization error in the proposed SLAM algorithm. Experimental results show that the loop-closing error ranges between 0.3 to 0.5 meters. In the future, it is expected that this method will also be applicable in the fields of path planning and navigation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer