Abstract

Differential SAR Tomography (D-TomoSAR), as an extension of InSAR technology, combines D-InSAR and TomoSAR technology to achieve imaging in the height-deformation rate (s-v) plane. It not only solves the layover problem of SAR imaging, but also obtains the height and deformation rate of each scatterer within the image element. The technique is currently mainly applied to complex scenes in urban areas where the layover problem is serious, and the layover effect also exists for hydropower plants with extremely steep slopes. In this paper, the Differential SAR Tomography technique is applied to the four-dimensional imaging of hydraulic engineering for the first time, taking the La Siwa hydropower station as an example. This experiment establishes the signal model based on permanent scatterer points, so interferometric processing and PS point selection should be performed to obtain the differential interferogram sequence and PS points in the region; the orthogonal matching pursuit (OMP) algorithm is selected for differential SAR tomography imaging processing to reconstruct the elevation-deformation rate backward scattering profile. The experiments use the 23-view TerraSAR-X satellite one-meter resolution time series image dataset for deformation monitoring of the Laxiwa hydropower dam in GuiDe County, Qinghai Province, China, and finally the resolution and reconstruction estimation performance are evaluated by theoretical analysis and application case study. A comparison with the traditional InSAR technique shows that the differential SAR tomography technique not only maintains the advantages of high resolution, but also significantly improves the probability of accurate reconstruction of scattered points, and achieves higher accuracy in estimating the deformation of hydropower dams. This paper mainly discusses the application of differential SAR tomography technology in water conservancy projects, hoping to provide reference and help for the future large-scale application of differential SAR tomography technology in hydroelectric dam deformation monitoring.

Details

Title
DIFFERENTIAL SAR TOMOGRAPHY OF LARGE-SCALE WATER CONSERVANCY PROJECTS UNDER STEEP TERRAIN – THE CASE STUDY OF LAXIWA HYDROPOWER STATION
Author
L Li 1 ; Pang, L 1 ; Li, C H 1 

 School of Geomatics and Urban Spatial Informatics, Beijing University Of Civil Engineering And Architecture, No.15 Yongyuan Road, Daxing District, Beijing, China; School of Geomatics and Urban Spatial Informatics, Beijing University Of Civil Engineering And Architecture, No.15 Yongyuan Road, Daxing District, Beijing, China 
Pages
1243-1249
Publication year
2023
Publication date
2023
Publisher
Copernicus GmbH
ISSN
16821750
e-ISSN
21949034
Source type
Conference Paper
Language of publication
English
ProQuest document ID
2901393682
Copyright
© 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.