It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
For very high frequency (VHF) phased array radar, the key problem to be solved in altitude measurement is the super-resolution spatial spectrum estimation under the condition of coherent sources. The spatial smoothing algorithm is a kind of decorrelation algorithm with excellent properties, but the decorrelation process is at the expense of the effective array aperture. Because it only uses the autocorrelation information of the subspace, its performance is significantly reduced, when the positions of the coherent sources are very close. In order to solve the above problems, this paper proposes an altitude measurement method of VHF radar based on the space smoothing of autocorrelation and cross-correlation matrix, which is used to realize the correlation and super-resolution processing of echo signals and multipath signals. The proposed method does not need to construct a weighting matrix, and can make full use of the received data, enhance the signal components in the equivalent spatial smoothing matrix, reduce the impact of noise, and improve the resolution of coherent sources. The simulation results show that the weighted spatial smoothing method proposed in this paper is correct and effective.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Nanchang Institute of Science and Technology, School of Information and Artificial Intelligence, Nanchang, China (GRID:grid.495750.a)
2 Nanchang Industry and Technology School, Nanchang, China (GRID:grid.495750.a)