It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Plant proteins have become attractive for biomedical applications such as wound dressing and drug delivery. In this research, nanofibers from pristine zein (plant protein) and zein loaded with tungsten oxide (WO3) were prepared (WO3@zein) using less toxic solvents (ethanol and acetic acid). Morphological and biological properties of the zein nanofiber were determined. Prepared nanofibers were defined by thermogravimetric analysis (TGA), X-ray diffraction (X-RD), Fourier-transform infrared spectroscopy (FT-IR), and scanning electron microscopy. The average fiber diameter was unchanged with an increase in WO3 concentration from 0.001 to 0.008%. FT-IR spectroscopy and X-RD indicated the presence of WO3 in WO3@zein nanofibers. In comparison to WO3-free, WO3@zein nanofibers showed higher safety and preserved the anticancer effect of WO3 against human melanoma cell line (A375) melanoma cells compared to WO3-free. Moreover, both WO3-free and WO3@zein caused a fourfold increase in the cellular proliferation of reactive oxygen species (ROS) in the treated A375 cells compared to untreated cells. ROS elevation led to apoptosis-dependent cell death of A375 cells as evidenced by up-regulating the expression of p53-downstream genes (p21 and Bax) (tumor-suppressor gene) while down-regulating the expression of key oncogenes (BCL2 and cyclin D). In conclusion, the prepared nanofiber represents a promising and safe candidate for anticancer applications.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 City of Scientific Research and Technological Applications (SRTA-City), Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), New Borg El-Arab City, Egypt (GRID:grid.420020.4) (ISNI:0000 0004 0483 2576)
2 City of Scientific Research and Technological Applications (SRTA-City), Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, New Borg EL-Arab City, Egypt (GRID:grid.420020.4) (ISNI:0000 0004 0483 2576)