It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
According to the World Health Organization, foodborne disease is a significant public health issue. We will choose the best model to predict foodborne disease by comparison, to provide evidence for government policies to prevent foodborne illness.
Methods
The foodborne disease monthly incidence data from June 2017 to April 2022 were obtained from the Chongqing Nan’an District Center for Disease Prevention and Control. Data from June 2017 to June 2021 were used to train the model, and the last 10 months of incidence were used for prediction and validation The incidence was fitted using the seasonal autoregressive integrated moving average (SARIMA) model, Holt-Winters model and Exponential Smoothing (ETS) model. Besides, we used MSE, MAE, RMSE to determine which model fits better.
Results
During June 2017 to April 2022, the incidence of foodborne disease showed seasonal changes, the months with the highest incidence are June to November. The optimal model of SARIMA is SARIMA (1,0,0) (1,1,0)12. The MSE, MAE, RMSE of the Holt-Winters model are 8.78, 2.33 and 2.96 respectively, which less than those of the SARIMA and ETS model, and its prediction curve is closer to the true value. The optimal model has good predictive performance.
Conclusion
Based on the results, Holt-Winters model produces better prediction accuracy of the model.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer