It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Parenchymal accumulation of beta-amyloid (Aβ) characterizes Alzheimer’s disease (AD). Aβ homeostasis is maintained by two ATP-binding cassette (ABC) transporters (ABCC1 and ABCB1) mediating efflux, and the receptor for advanced glycation end products (RAGE) mediating influx across the blood-brain barrier (BBB). Altered transporter levels and disruption of tight junctions (TJ) were linked to AD. However, Aβ transport and the activity of ABCC1, ABCB1 and RAGE as well as the functionality of TJ in AD are unclear.
Methods
ISMICAP, a BBB model involving microperfusion of capillaries, was used to assess BBB properties in acute cortical brain slices from Tg2576 mice compared to wild-type (WT) controls using two-photon microscopy. TJ integrity was tested by vascularly perfusing biocytin-tetramethylrhodamine (TMR) and quantifying its extravascular diffusion as well as the diffusion of FM1-43 from luminal to abluminal membranes of endothelial cells (ECs). To assess ABCC1 and ABCB1 activity, calcein-AM was perfused, which is converted to fluorescent calcein in ECs and gets actively extruded by both transporters. To probe which transporter is involved, probenecid or Elacridar were applied, individually or combined, to block ABCC1 and ABCB1, respectively. To assess RAGE activity, the binding of 5-FAM-tagged Aβ by ECs was quantified with or without applying FPS-ZM1, a RAGE antagonist.
Results
In Tg2576 mouse brain, extravascular TMR was 1.8-fold that in WT mice, indicating increased paracellular leakage. FM1-43 staining of abluminal membranes in Tg2576 capillaries was 1.7-fold that in WT mice, indicating reduced TJ integrity in AD. While calcein was undetectable in WT mice, its accumulation was significant in Tg2576 mice, suggesting lower calcein extrusion in AD. Incubation with probenecid or Elacridar in WT mice resulted in a marked calcein accumulation, yet probenecid alone had no effect in Tg2576 mice, implying the absence of probenecid-sensitive ABC transporters. In WT mice, Aβ accumulated along the luminal membranes, which was undetectable after applying FPS-ZM1. In contrast, marginal Aβ fluorescence was observed in Tg2576 vessels, and FPS-ZM1 was without effect, suggesting reduced RAGE binding activity.
Conclusions
Disrupted TJ integrity, reduced ABCC1 functionality and decreased RAGE binding were identified as BBB alterations in Tg2576 mice, with the latter finding challenging the current concepts. Our results suggest to manage AD by including modulation of TJ proteins and Aβ-RAGE binding.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer