It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Exchange of antimicrobial resistance genes via mobile genetic elements occur in the gut which can be transferred from mother to neonate during birth. This study is the first to analyse transmissible colistin resistance gene, mcr, in pregnant mothers and neonates. Samples were collected from pregnant mothers (rectal) and septicaemic neonates (rectal and blood) and analysed for the presence of mcr, its transmissibility, genome diversity, and exchange of mcr between isolates within an individual and across different individuals (not necessarily mother–baby pairs). mcr-1.1 was detected in rectal samples of pregnant mothers (n = 10, 0.9%), but not in neonates. All mcr-positive mothers gave birth to healthy neonates from whom rectal specimen were not collected. Hence, the transmission of mcr between these mother-neonate pairs could not be studied. mcr-1.1 was noted only in Escherichia coli (phylogroup A & B1), and carried few resistance and virulence genes. Isolates belonged to diverse sequence types (n = 11) with two novel STs (ST12452, ST12455). mcr-1.1 was borne on conjugative IncHI2 bracketed between ISApl1 on Tn6630, and the plasmids exhibited similarities in sequences across the study isolates. Phylogenetic comparison showed that study isolates were related to mcr-positive isolates of animal origin from Southeast Asian countries. Spread of mcr-1.1 within this study occurred either via similar mcr-positive clones or similar mcr-bearing plasmids in mothers. Though this study could not build evidence for mother–baby transmission but the presence of such genes in the maternal specimen may enhance the chances of transmission to neonates.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
2 Institute of Infection and Immunity, Cardiff University, Cardiff, UK; Department of Zoology, Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK
3 Institute of Infection and Immunity, Cardiff University, Cardiff, UK; Centre for Trials Research, Cardiff University, Cardiff, UK
4 Institute of Infection and Immunity, Cardiff University, Cardiff, UK; Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, Aveiro, Portugal
5 Department of Neonatology, Institute of Post-Graduate and Medical Education & Research, Kolkata, India
6 Department of Obstetrics & Gynecology, Institute of Post-Graduate and Medical Education & Research, Kolkata, India