It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The temperature dependent order parameter provides important information on the nature of magnetism. Using traditional methods to study this parameter in two-dimensional (2D) magnets remains difficult, however, particularly for insulating antiferromagnetic (AF) compounds. Here, we show that its temperature dependence in AF MPS3 (M(II) = Fe, Co, Ni) can be probed via the anisotropy in the resonance frequency of rectangular membranes, mediated by a combination of anisotropic magnetostriction and spontaneous staggered magnetization. Density functional calculations followed by a derived orbital-resolved magnetic exchange analysis confirm and unravel the microscopic origin of this magnetization-induced anisotropic strain. We further show that the temperature and thickness dependent order parameter allows to deduce the material’s critical exponents characterising magnetic order. Nanomechanical sensing of magnetic order thus provides a future platform to investigate 2D magnetism down to the single-layer limit.
Van der Waals antiferromagnets offer a unique platform for studying magnetism in reduced dimensions, however, the low dimensionality, combined with lack of net magnetization, renders investigation challenging with conventional experimental probes. Here, Houmes et al show how van der Waals antiferromagnets can be investigated via the resonances of a vibrating rectangular membranes of this material.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details








1 Delft University of Technology, Kavli Institute of Nanoscience, Delft, The Netherlands (GRID:grid.5292.c) (ISNI:0000 0001 2097 4740)
2 Universitat de València, Instituto de Ciencia Molecular (ICMol), Paterna, Spain (GRID:grid.5338.d) (ISNI:0000 0001 2173 938X)
3 Delft University of Technology, Kavli Institute of Nanoscience, Delft, The Netherlands (GRID:grid.5292.c) (ISNI:0000 0001 2097 4740); Universitat de València, Instituto de Ciencia Molecular (ICMol), Paterna, Spain (GRID:grid.5338.d) (ISNI:0000 0001 2173 938X)
4 Delft University of Technology, Kavli Institute of Nanoscience, Delft, The Netherlands (GRID:grid.5292.c) (ISNI:0000 0001 2097 4740); Delft University of Technology, Department of Precision and Microsystems Engineering, Delft, The Netherlands (GRID:grid.5292.c) (ISNI:0000 0001 2097 4740)