Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The longitudinal dynamic response of a large-diameter-bored pile is investigated considering the bottom sediment and the radial unloading of the surrounding soil. First, the sediment between the pile tip and the bedrock is treated as a fictitious soil pile with a cross-sectional area similarto that of the pile tip. The large-diameter-bored pile (including the fictitious soil pile) is considered as a Rayleigh–Love rod and is divided into finite segments. Under theseconditions, the three-dimensional (3D) effect of the wave propagation along the pile is indirectly simulated by considering the transverse inertia of the pile to avoid complicated calculations. Meanwhile, the surrounding soil is divided into finite annular zones in the radial direction, with the soil properties varying radially as well to simulate the radial unloading of the surrounding soil during construction. The governing equation for each soil zone is built and solved, from zone to zone, to obtain the shear stress acting on the pile. Then, the governing equation for the fictitious soil pile (i.e., the sediment) is solved to derive the dynamic action at the pile tip. In a similar manner to that ofthe fictitious soil pile and together with the recursion method, the governing equation for the pile is solved to obtain the pile’s complex impedance and velocity response. The proposed solution is verified and then introduced to portray the coupling effect of the sediment, pile parameters and radial unloading of the surrounding soil on the longitudinal dynamic response of the large-diameter-bored pile.

Details

Title
Longitudinal Dynamic Response of a Large-Diameter-Bored Pile Considering the Bottom Sediment and Radial Unloading of the Surrounding Soil
Author
Zhang, Cun 1 ; Zhuoma, Pingcuo 1 ; Zhang, Yongjuan 1 ; Li, Zhenya 2 

 College of Water Conservancy and Civil Engineering, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China; [email protected] (C.Z.); [email protected] (P.Z.); [email protected] (Y.Z.); Research Center of Civil, Hydraulic and Power Engineering of Tibet, Linzhi 860000, China 
 Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China; Geotechnical Research Institute, Hohai University, Nanjing 210098, China 
First page
13252
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2904596686
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.